Credit gap risk in a first passage time model with jumps

نویسندگان

  • Natalie Packham
  • Lutz Schlögl
  • Wolfgang M. Schmidt
چکیده

The payoff of many credit derivatives depends on the level of credit spreads. In particular, credit derivatives with a leverage component are subject to gap risk, a risk associated with the occurrence of jumps in the underlying credit default swaps. In the framework of first passage time models, we consider a model that addresses these issues. The principal idea is to model a credit quality process as an Itô integral with respect to a Brownian motion with a stochastic volatility. Using a representation of the credit quality process as a time-changed Brownian motion, one can derive formulas for conditional default probabilities and credit spreads. An example for a volatility process is the square root of a Lévy-driven Ornstein-Uhlenbeck process. The model can be implemented efficiently using a technique called Panjer recursion. Calibration to a wide range of dynamics is supported. We illustrate the effectiveness of the model by valuing a leveraged credit-linked note.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

No . 21 Credit dynamics in a first passage time model with jumps

The payoff of many credit derivatives depends on the level of credit spreads. In particular, the payoff of credit derivatives with a leverage component is sensitive to jumps in the underlying credit spreads. In the framework of first passage time models we extend the model introduced in [Overbeck and Schmidt, 2005] to address these issues. In the extended a model, a credit quality process is dr...

متن کامل

Credit dynamics in a first passage time model with jumps

The payoff of many credit derivatives depends on the level of credit spreads. In particular, the payoff of credit derivatives with a leverage component is sensitive to jumps in the underlying credit spreads. In the framework of first passage time models we extend the model introduced in [Overbeck and Schmidt, 2005] to address these issues. In the extended a model, a credit quality process is dr...

متن کامل

Credit risk modeling using time-changed Brownian motion

Motivated by the interplay between structural and reduced form credit models, we propose to model the firm value process as a time-changed Brownian motion that may include jumps and stochastic volatility effects, and to study the first passage problem for such processes. We are lead to consider modifying the standard first passage problem for stochastic processes to capitalize on this time chan...

متن کامل

A Structural Credit-Risk Model based on a Jump Diffusion

In this paper, we generalize the pure diffusion approach for structural credit risk modeling by including jumps in the firm-value process. In pure diffusion models, the probability for a solvent company to default within a small interval of time is negligible, whereas a real company may face sudden financial distress. Our generalization allows those unpredicted extremal events, raising the prob...

متن کامل

Efficient Pricing Routines of Credit Default Swaps in a Structural Default Model with Jumps

In this paper, we present two efficient algorithms for pricing credit default swaps based on a structural default model. In our model, the value of the firm is assumed to be the exponential of a jump-diffusion process. Our first algorithm to price a credit default swap within this framework is an efficient and unbiased Monte Carlo simulation. An excellent performance is obtained by first simula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009